Structure Reports

Online
ISSN 1600-5368

Zeynep Gültekin, ${ }^{\text {a }}$ Wolfgang Frey ${ }^{\text {b }}$ and Tuncer Hökelek ${ }^{\text {c }}$ *

${ }^{\text {a }}$ Zonguldak Karaelmas University, Department of Chemistry, 067100 Zonguldak, Turkey,
${ }^{\text {b }}$ Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, and ${ }^{\mathrm{c}}$ Hacettepe University, Department of Physics, 06800 Beytepe Ankara, Turkey

Correspondence e-mail:
merzifon@hacettepe.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.053$
$w R$ factor $=0.153$
Data-to-parameter ratio $=18.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(p-Nitrophenylsulfonyl)-1H-pyrrole

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, the dihedral angle between the pyrrole and benzene rings is $77.9(1)^{\circ}$. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds stabilize the crystal structure, forming molecular chains extending approximately parallel to the c axis and stacked along the b axis.

Comment

The [$4+2$]-cycloaddition reaction between pyrroles and dienophiles has been shown to be a general method for the synthesis of 7 -azabicyclo[2.2.1]hepta-2,5-diene and 7 -azabi-cyclo[2.2.1]hepta-2-ene derivatives (Trudell \& Chen, 1996; Corey \& Loh, 1993; Jung \& Rohloff, 1984). However, pyrrole is a very poor diene for the [4+2]-cycloaddition reaction and usually reacts with alkenyl and acetylenic dicarboxylic acid derivatives to give Michael addition products.
When an electron-withdrawing group [such as $\mathrm{CO}_{2} \mathrm{Me}$, $\mathrm{COMe}, \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}(\mathrm{Ts})$ or CONH_{2}] is attached to the pyrrole N atom, the aromatic ring is found to be more reactive as a diene toward acetylenic dienophiles (Drew et al., 1985; Shen \& Huang, 1993; Napalitano et al., 1997). However, Michael addition products are still found to be the major products of these reactions.

(I)

The pyrrole derivative of a diene, viz. N-butoxycarbonylpyrrole, has been converted into 7-(tert-butoxycarbonyl)-7-azabicyclo[2.2.1]heptan-2-one via cycloaddition with methyl 3bromopropiolate. This was then used for the synthesis of racemic epibatidine (Zhang \& Trudell, 1996). The title compound, (I), may be a useful diene in cycloadditions and may also be a useful starting material for the preparation of biologically important compounds such as epibatidine.

The molecular structure of the title compound, (I), is shown in Fig. 1. The steric interaction between H 1 attached to C 1 and atom $\mathrm{O} 3[\mathrm{O} 3 \cdots \mathrm{H} 1=2.56(3) \AA$ A results in an enlarged $\mathrm{S} 1-$ $\mathrm{N} 1-\mathrm{C} 1$ angle $\left[125.9(2)^{\circ}\right]$. It is well known that nitro substituents are very strong electron-withdrawing groups, so the endocyclic $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ angle $\left[123.1(2)^{\circ}\right]$ is also enlarged. The back donation of the lone pair of electrons of atom N1, and also the electron-withdrawing character of the nitro-

Received 18 November 2004 Accepted 24 November 2004 Online 30 November 2004

An ORTEP-3 (Farrugia, 1997) drawing of the title molecule, with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50\% probability level.

Figure 2

A packing diagram of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted.
phenylsulfonyl group, affect the bond lengths $\mathrm{N} 1-\mathrm{S} 1$ [1.654 (2) \AA] and S1-C5 [1.762 (2) Å]. On the other hand, the electron-withdrawing character of the nitro group has an influence on the $\mathrm{C} 8-\mathrm{N} 2$ bond length $[1.476$ (3) \AA].

The pyrrole and benzene rings are each planar and the dihedral angle between their least-squares planes is $77.9(1)^{\circ}$. In the pyrrole ring, there is a pseudo-twofold axis passing through atom C 2 and the mid-point of the $\mathrm{N} 1-\mathrm{C} 4$ bond, as is evident from the torsion angles (Table 1). The geometrical features of (I) are similar to those of 1-phenylsulfonylpyrrole (Beddoes et al., 1986), 3-benzoyl-1-tosylpyrrole (Erickson et al., 1992), N-(1-benzenesulfonyl-4-acetylpyrrol-3-yl)acetamide (Grossie et al., 2001) and 2-bromo- N-(p-toluenesulfonyl)pyrrole (Knight et al., 2003).

Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) stabilize the crystal structure, forming molecular chains extending approximately parallel to the c axis and stacked along the b axis (Fig. 2).

Experimental

The title compound was prepared according to a literature method (Wasley \& Chan, 1973). p-Nitrobenzenesulfonamide (5.0 g,
25.0 mmol), 2,5-dimethoxytetrahydrofuran ($4 \mathrm{ml}, 30 \mathrm{mmol}$) and glacial acetic acid (27 ml) were combined and heated under reflux for 12 h . The reaction mixture was cooled to 293 K , poured into ice-water $(50 \mathrm{ml})$ and stirred for 30 min . The solidified product was collected by filtration and recrystallized from ethanol (yield $4.4 \mathrm{~g}, 71 \%$; m.p. 415 K).

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$

$$
D_{x}=1.551 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=252.24$
Monoclinic, $P 2_{1} / c$
$a=12.7169$ (17) \AA
$b=7.5317$ (13) \AA
$c=11.2959$ (12) \AA
$\beta=93.381(12)^{\circ}$
$V=1080.0(3) \AA^{3}$
$Z=4$

$$
\text { Mo } K \alpha \text { radiation }
$$

Cell parameters from 25 reflections
$\theta=15-22^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light yellow
$0.30 \times 0.25 \times 0.15 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
Non-profiled ω scans
Absorption correction: none
3587 measured reflections
3452 independent reflections
2611 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$

$$
\begin{aligned}
& \theta_{\max }=31.0^{\circ} \\
& h=0 \rightarrow 18 \\
& k=0 \rightarrow 10 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 50 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0643 P)^{2}\right. \\
& \quad+0.3051 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.153$
$S=1.08$
3452 reflections
186 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

S1-N1	$1.6537(18)$	$\mathrm{N} 2-\mathrm{O} 1$	$1.218(3)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.4277(18)$	$\mathrm{N} 2-\mathrm{O} 2$	$1.218(3)$
$\mathrm{S} 1-\mathrm{O} 4$	$1.4215(19)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.476(3)$
$\mathrm{S} 1-\mathrm{C} 5$	$1.762(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.342(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.394(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.415(4)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.393(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.335(4)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{N} 1$	$105.90(10)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{S} 1$	$125.58(16)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 5$	$108.63(11)$	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{O} 2$	$124.3(3)$
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 3$	$121.64(13)$	$\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 8$	$118.6(3)$
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{N} 1$	$106.26(11)$	$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 8$	$117.1(2)$
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{C} 5$	$108.47(10)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$107.2(2)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 5$	$104.66(9)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$108.4(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	$125.90(16)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$108.4(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$108.4(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$107.6(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$1.0(2)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$1.0(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$-1.3(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.4(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.4(3)$		

Table 2
Hydrogen-bonding geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C4-H4 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.93(3)$	$2.56(2)$	$3.359(3)$	$145(2)$
C9-H9 $\mathrm{O}^{\text {ii }}$	$0.92(3)$	$2.41(3)$	$3.247(3)$	$152(2)$

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $x, y-1, z$.

organic papers

The H atoms were located in a difference synthesis and refined isotropically $[\mathrm{C}-\mathrm{H}=0.85$ (3) -0.94 (3) \AA].

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. \& Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Corey, E. J. \& Loh, T. P. (1993). Tetrahedron Lett. 34, 3979-3982.
Drew, M. G. B., George, A. V., Isaac, N. S. \& Rzepa, H. S. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1277-1284.

Erickson, M. S., Fronczek, F. R. \& McLaughlin, M. L. (1992). Acta Cryst. C48, 202-203.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Grossie, D. A., Ketcha, D., Brooke, J. P., Jones, S. A. \& Grieb, J. G. (2001). Acta Cryst. E57, o778-o780.
Jung, M. E. \& Rohloff, J. C. (1984). J. Chem. Soc. Chem. Commun. pp. 630632.

Knight, L. W., Padgett, C. W., Huffman, J. W. \& Pennington, W. T. (2003). Acta Cryst. E59, o762-o764.
Napalitano, E., Katzenellenbogen, J. A. \& Tedesco, R. (1997). Tetrahedron Lett. 38, 7997-8000.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Shen, T. H. \& Huang, D. F. (1993). Tetrahedron Lett. 34, 4477-4480.
Trudell, M. L. \& Chen, Z. (1996). Chem. Rev. 96, 1179-1193.
Wasley, J. W. F. \& Chan, K. (1973). Synth. Commun. 3, 303-304.
Zhang, C. \& Trudell, M. L. (1996). J. Org. Chem. 61, 7189-7191.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

